• 市场方案
  • 技术解决方案
  • 设计和服务
  • 新闻和活动
  • 技术资料和文档
  • 关于我们
  • 更多

公司博客

格芯的12LP工艺:幕后

在当今的半导体行业,几纳米就代表着很大的差距。早些年,代工厂通过“光刻收缩”的方式提供半代工艺,除了按下掩码和步进配置之外,无需进行其他改变。

格芯的12LP工艺恰恰相反,它采用与发展依然强劲的14LPP平台相同的图形技术,但对工艺和标准单元库进行了许多巧妙的改变,以实现性能、功耗和面积(PPA)方面的改进。该工艺于2017年9月首次公布,并获得AMD的公开支持,有关该工艺变化的详情首次出现在6月下旬于火奴鲁鲁举行的2018年VLSI科技研讨会的一场报告会中。

在业务方面,格芯已准备好了汽车和射频/模拟模块,以利用12LP解决方案更好地支持这些市场。12LP工艺在去年秋季得到了较大提升,当时AMD表示会快速地将主要生产线转移到12LP工艺。随后,一家移动行业的客户也开始将12LP工艺用于其应用处理器。

格芯的FinFET产品管理副总监Erin Lavigne表示:“客户最关心的是12LP的发展。”那些正在设计新型IC的客户希望实现更高的晶体管密度,实现功耗和性能增益,同时通过缩小芯片尺寸来节约成本。

由于14LPP和12LP的工具套件几乎相同,所以工厂可以在14LPP或12LP生产之间“灵活切换”。“我们的产能可互换,”Lavigne说道,“虽然AMD是我们的一个主要战略客户,但8号晶圆厂并不只是为AMD服务。我们可以支持我们的所有客户,同时继续满足AMD的需求。除了我们的两个主要客户,我们的流水线已迅速扩展至消费品、人工智能、汽车和工业领域。”

格芯的技术开发副总监Hsien-Ching Lo曾表示,在后道工序 (BEOL) 这个重要领域中,格芯已经采取了不同于竞争对手的方法。当其他代工厂为缩减芯片尺寸而缩小M2间距时,格芯的12LP仍采用与14LPP工艺相同的64nm M2间距。这一策略使客户能够实现性能、功率和面积 (PPA) 方面的改进,同时最大限度地减少设计返工。

在夏威夷举行的VLSI会议证实了这一说法。三星的一家工厂在其12LP工艺报告中描述了能够使用9T或6.75T程序库。然而,较之于14nm工艺的64nm M2间距,6.75T库要求使用48nm间距的M2。TSMC已采用了类似的方式, 即更改其12nm产品(16nm工艺的后继工艺)的M2间距。

Lo表示,采用不同的M2间距是对设计规则的一种改变,较之于格芯利用相同的M2间距支持7.5T程序库战略,这种改变需要进行更多的设计返工。“对于客户来说,从14迁移至12更轻松。只需要进行非常少的设计迁移,就可在性能和面积方面实现改进。”他说道。

当格芯在12LP设计中继续支持14LPP 9T库时,Lavigne表示7.5T程序库在缩小芯片尺寸和提高性能方面“物有所值”。Lavigne谈到:“使用这个库需要客户进行一些重新设计。客户可以选择进行多少重新设计工作来扩展平台。”

较之于格芯的14LPP工艺,配备高性能元件的12LP工艺可将环形振荡器AC性能提高15%,在同等速度条件下将12LP(带7.5T标准单元库)的总功耗降低16%,将逻辑区面积扩大12%。值得注意的是,在电流读数相同的情况下,12LP SRAM可令泄漏减少30%。

格芯的12LP是一种进步。资料来源:H.C.Lo在VLSI科技和电路研讨会上的报告

Lo在VLSI研讨会上发表了演讲,介绍了12LP工艺在5个要素方面的修改。

第一,对鳍片外形进行了改进,使之变得更高、更薄,从而改进了驱动电流和短沟道控制。鳍片表面粗糙度也有所降低,从而将NFET和PFET的载波移动性分别提高了6%和9%。

第二,为了在不增加泄漏的情况下提高PFET性能,对源极/漏极空腔外形进行了改进,将14LPP工艺的碗型空腔修改为12LP工艺的深凹空腔。需通过扩大空腔的方式提高通道上的应变,同时提供更多的嵌入式硅锗(eSiGe),但又不会以增加泄漏为代价。

第三,对eSiGe进行了优化,以改进图案负载效益,其中40-鳍片设备可提升4%,而单向扩散中断(SDB)设备可提升5%。

PEFT eSiGe优化。资料来源:H.C.Lo在VLSI科技和电路研讨会上的报告

第四,增加了NFET掺杂密度。Lo表示,通过优化硅磷外延工艺,源-漏极电阻大约提高了6%。

接触电阻是前沿设计中的一个主要关注点。格芯的先进技术开发团队为降低接触电阻进行了两次优化。通过扩大底部接触面积,改进了沟槽式接触区形状。“我们需要扩大接触面积和底部CD(临界尺寸),但又不想以TDDB(经时击穿)为代价。通常,如果接触CD增大,多晶硅栅极触点之间的间隙就会变小。然后,就可以看到电介质击穿的退化。”Lo在VLSI研讨会上的一次访谈中说道。

第五,对沟槽式接触下的掺杂区域进行了优化,以降低接触势垒高度。他还表示,通过进行“一些接口工程”提高了硅化物电阻。

表面上,从14nm到12nm似乎并没有什么大不了的,但透过现象看本质,你就会发现为交付一项令人信服的技术需要在工程设计方面付出多少努力。

关于作者

Dave Lammers是固态技术特约撰稿人,也是格芯的Foundry Files的特约博客作者。他于20世界80年代早期在美联社东京分社工作期间开始撰写关于半导体行业的文章,彼时该行业正经历快速发展。他于1985年加入E.E. Times,定居东京,在之后的14年内,足迹遍及日本、韩国和台湾。1998年,Dave与他的妻子Mieko以及4个孩子移居奥斯丁,为E.E Times开设德克萨斯办事处。Dave毕业于美国圣母大学,获得密苏里大学新闻学院新闻学硕士学位。

了解更多
回到顶部

上一篇文章

下一篇文章